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Spectral Image	Properties
An	image function may be considered a	sum of spatially sinusoidal components of
different	 frequencies.
The	frequency spectrum indicates the magnitudes of the spatial frequencies contained
in	an	image.
Principle:	 	

Important qualitative	properties of spectral information:
•			spectral information is independent of image locations
•			sharp	edges give rise to high	 frequencies
•			noise (=	disturbances of image signal)	is often high-frequency
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Illustration	of
1-D	Fourier	Series	Expansion
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original	waveform

sinusoidal	components
add	up	to	original	waveform

approximation	of	a	rectangular	pulse
with	1	...	5	sinusoidal	components
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Discrete Fourier	Transform	(DFT)
Computes image representationas a	sum of sinusoidals.

Notation	for computing the Fourier	Transform:

Transform	is based on	periodicity
assumption!
à periodic continuationmay

cause boundaryeffects
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Discrete Fourier	Transform: Inverse	Discrete Fourier-Transform:

Guv = F gmn{ }
gmn = F

−1 Guv{ }
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Basic Properties of DFT

• Linearity: F{ a g1mn + b g2mn } = a F{ g1mn } + b F{ g2mn }

• Symmetry:			 G-u,-v = Guv for real	gmn (such	as images)
In	general,	the Fourier	transform is a	complex function with a	real	
(even)	and an	imaginary (odd)	part:

Guv = Ruv + i Iuv

5
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Euler´s formula:    
r eiz = r cos(z) + r i sin(z) Recommended reading:

Gonzalez/Wintz
Digital Image Processing
Addison Wesley 87 

05.11.15 University of Hamburg, Dept. Informatics



Measures of DFT

Freuqency/amplitude spectrum

Power	spectrum

Phase	spectrum

Frequency

Direction
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Illustrative	Example of
Fourier	Transform
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g(x, y)

X
Y

A

frequency spectrum as an	
intensity function

2D	image function

Note	that large	spectral amplitudes occur in	
directions vertical to prominent	edges of the

image function!

Frequency spectrum
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Examples of Fourier	Transform	Pairs

IP1	- Lecture 7:	Spectral Image	Processing	and Convolution

• • • • • ••••••• • • • • • •

••••••

05.11.15 University of Hamburg, Dept. Informatics 8



Example of a	Real-world Amplitude	Spectrum

9
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Fast	Fourier-Transformation	
Ordinary DFT	needs ~(MN)2 operations for an	image of size M	x	N.
Example:		M = N = 1024, 10-12 sec/operation à 1,1 s.

Same	example with FFT	needs only about 0.000021	seconds.

The	next slideswill:
• introduce the decomposition scheme and
• give one-dimensional	 examples of the FFT
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FFT	(Fast	Fourier	Transform) is based on	
recursive decomposition of gmn into subsequences.	

Due	to multiple	use of partial	results
à ~ MN log2(MN) Operations.	
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Fast	Fourier-Transformation	
Principle of decomposition for the 1D-DFT	(Cooley	&	Tukey,	1965):
For r = 0, ..., N-1 and N=2n:
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Decomposition in	odd/even part

All	Grmy be computed by (N/2)2 instead of (N)2 operations!

Gr =Gr
(1) + e

−π jr1
nGr

(2) r = 0, ... ,n−1

Gr =Gr
(1) − e

−π jr1
nGr

(2) r = n, ... , 2n−1

Decomposition in	frequency space



Cooley	&	Tukey Decomposition I	

Example with two values (N=2)

Graphical representation:
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G0 = g0 +  g1

G0 = g0 + e
−2π j⋅0  g1 = g0 + g1

G1 = g0 − e
−2π j⋅0  g1 = g0 − g1

G1 = g0 −  g1g1

g0 positive
negative



Cooley	&	Tukey Decomposition II	

Example with four values (N=4)

05.11.15 University of Hamburg, Dept. Informatics 13

IP1	- Lecture 7:	Spectral Image	Processing	and Convolution

g0
g1
g2
g3

+
-

product

w0

w1

G0 = (g0 + g2 )+  (g1 + g3)
G2 = (g0 + g2 )−  (g1 + g3)
G1 = (g0 − g2 )w0 +  (g1 − g3)w1

G3 = (g0 − g2 )w0 − (g1 − g3)w1

w0 = e
−2π j1

4 = e
−
1
2
π j

w1 = e
−2π j 3

4 = e
−
3
2
π j

With weights:



Cooley	&	Tukey Dekomposition	III	

Example with eight values (N=8)
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Convolution
Convolution is an	important operation for describingand analyzing linear	
operations,	e.g.	filtering.	

Definition	of 2D	convolution for continuous signals:

Convolution in	the spatial domain is dual	tomultiplication in	the frequency
domain:

H	can be interpreted as attenuatingor amplifying the frequencies of F.	
à Convolutiondescribes filtering in	the spatial domain.	

15
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g(x, y) =  f (r, s) 
−∞

∞

∫
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∞

∫ h(x − r, y− s) dr  ds = f (x, y)∗h(x, y)

F{ f (x,  y) *  h(x,  y) } =  F(u,  v) ⋅H (u,  v)
F{ f (x,  y) ⋅  h(x,  y) } =  F(u,  v) *H (u,  v)
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Filtering in the Frequency Domain
A	filter transforms a	signal by modifying its spectrum.

G(u, v) = F(u, v) H(u, v)

F Fourier	transform of the signal
H frequency transfer function of the filter
G modified Fourier	transform of signal

Typical filters:
– low-pass	filter low frequencies pass,	high	frequencies are

attenuated or removed
– high-pass	filter high	frequencies pass,	 low frequencies are

attenuated or removed
– band-pass	filter frequencies within a	frequency band	pass,	

other frequencies below or above are
attenuated or removed

Often (but	not	always)	the noise part of an	image is high-frequency and the signal part
is low-frequency.	Low-pass	filtering then improves the signal-to-noise ratio.
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Filtering in	the Spatial Domain
Filtering in	the spatial domain is described by convolution.

An	impulse δ as input generates the filter function h(x,	y)	as output:

h(x, y) is often called "impulse response“	w.r.t.	LTI	systems
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Low-pass	Filters

Ideal	low-pass	filter

• All	frequencies above W are annihilated
• Note	that the filter function h(x, y) is rotation symmetricand

h(r) ~ sinc(2pWr) = sin 2pWr / (2pWr) with r2 = x2 + y2

à impuls-shaped input structuresmayproduce ring-like structures as output
Gaussian filter
• optimally smooth	boundary,	both in	the frequency and the spatial domain.	
• important for several advanced image analysismethods,	e.g.	generating

multiscale images.	

18
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Discrete Filters
For periodicdiscrete 2D	signals (e.g.	discrete images),	the convolution
operatorwhich describes filtering is

Each pixel gij of the filtered image is the sum of the products of the original	
image with themirror filter h-m,-n placed at location ij.	

Example

19

gij =  fm,n
n=0

N-1

∑
m=0

M−1

∑ hi−m, j−n

hmn = h-m,-n is a	bell-shaped function,	 e.g.	Gaussian

The	filtering effect is a	smoothing operation by
weighted local averaging.

The choice of weights of a local filter - the convolution mask - may
influence the properties of the output image in important ways, e.g. 
with regard to remaining noise, blurred edges, artificial structures, 

preserved or discarded information.
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Matrix	Notation	for Discrete Filters
The	convolution operation

may be expressed as matrixmultiplication:	
Vectors and are obtained by stacking rows (or columns)	onto each other:

The	filtermatrixH is obtained by constructinga	matrixHj for each row j of hij:
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Avoiding Wrap-around Errors

Wrap-around errorsresult from filter responses due	to the periodic
continuation of image and filterà periodicity (cf.	slide 4).
To avoidwrap-around errors,	image and filter have to be extended e.g.	
by zeros.	
• A × B original	image size
• C × D original	filter size
• M × N extended image and filter size
Example:
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M ≥ A + C - 1
N ≥ B + D - 1 
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Discrete Convolution Using the FFT

Convolution in	the spatial domainmaybe performedmoreefficiently
using the FFT.

Using the FFT	and filtering in	the frequencydomain:

Examplewith M = N = 512:
– straight convolutionneeds ~	1010 operations
– convolution using the FFT	needs ~107	operations

22
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(MN)2 operations needed

gmn Guv Guv´ gmn´
FFT Huv FFT-1
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Convolution and Correlation
The	crosscorrelation function of 2	stationary stochastic processes
f	and h	is:

Comparewith convolution:	filter function is not	mirrored!

Correlation using Fourier	Transform:

23
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Correlation is particularly important for matching problems,
e.g.	matching an	imagewith a	template.

Correlation may be computedmore efficiently by using the FFT.

F{ f(x, y) o h(x, y) } = F*(u, v) H(u, v)

F{ f*(x, y) h(x, y) } = F(u, v) o H(u, v)
F*,	f*	are complex conjugates

g(x, y) =  f (r, s) 
−∞

∞

∫
−∞

∞

∫ h(r − x, s− y) dr  ds = f (x, y) ! h(x, y) = f (x, y)∗h(−x,−y)
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Correlation and Matching
Matchinga	templatewith an	image:

For (periodic)	discrete images,	
crosscorrelationat (i, j) is

Comparewith Euclidean distance
between f and h at location (i, j):

24
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• find	degree of match for all	locations
of template

• find	location of best match

image template
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measures distance
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Principle of Image	Restoration
Typical degradationmodel of a	continuous 1-dimensional	signal:

How can oneprocess g´(t) to obtain a	g´´(t)which best approximates g(t)?
Note	that a	perfect restoration g´´(t) = g(t)may not	be possible
even if z(t) = 0.

The	ideal	restoring filterH´(f) = 1/H(f) maynot	exist because of zeros of H(f).
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g(t) original	 signal
h(t) degrading filter
z(t) additive	noise
g´(t) degraded signal

r(t) restoring filter
g´´(t) restored signal

H(f)G(f) G´(f) H´(f) G´´(f)

g(t)

z(t)

g´(t)+h(t)

g‘(t)

?

g´´ (t)r(t)
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Image	Restoration	by Minimizing the MSE

Degradation	in	matrix notation:
Restored signal g´´ must	minimize the mean squareerror J(g´´) of the
remainingdifference:

If H is a	squarematrix,	and if H-1 exists,	we can simplify:
The	matrix H-1 gives a	perfect restoration if z = 0.		
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Discrete Convolution of Masked Images
Scenario:	Greyvalues exist only for a	partial	domain of the image function
• Examples:	

– Cloud coverage in	aerial and satellite images,	
– Segmented areas
– Sensor	malfunctions

• Problems	arise at the boundary of the convolution kernel (Titmarsh 1926).	
In	these areas,	discrete convolution results in	undesiredeffects.	

• „Easy	fixes“	suffer from additional	problems:
1. Exclude the boudary areas à (Strong)	reduction of the resulting image space!
2. Set	to zero à Errorneous values are introduced!

• If iterative	algorithms are used,	errorsmay also	be propagatedand
enhanced!
Wanted:	An	approach,		which treats „masked“	pixel as „no information“	

instead of „no intensity“!
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Normalized Convolution I

Approach	of Knutsson	und	Westin	(1993):

with: Example:
K Convolution kernel
I Image
A Applicable kernel
M Image	mask
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I ' = K * I I ' = K *M ,A I =
A ⋅K *(I ⋅M )
A ⋅K *M

  if  A ⋅K *M ≠ 0

0 else.

#

$
%

&
%

I  =  {250,  225,  200,  175,  150,  125,  100,  75,  50,  25,  0}
M  =  {1,  1,  1,  1,  1,  0,  0,  0,  0,  0,  0}
K  =  {1,  2,  4,  8,  4,  2,  1} / 22
A=1

K * I  = { , , , 175, 150, 125, 100, 75 , , , }
K *(I ⋅M ) = { , , , 159.09, 114.77, 52.27, 21.59, 6.82 , , , }
K *M ,A I  = { , , , 184.21, 168.33, 164.29, 158.33, 150 , , , }



Normalized Convolution II

Example of Knutsson	und	Westin
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K*I K *M ,A I

A=1

A locally
restricted

10%
Sampling

K: 
2D	discrete Gaussian
mit	σ=2,	Größe:17x17



Normalized Convolution III

Summary
• Combinesmask and discrete convolution,
• Execution speed may be enhanced by the use of FFT
• Derives results for masked areas if at least	one non-masked

pixel exists within the current neighborhood
àmay also	be used for reconstruction purpose

• Provides a	base to extend generic algorithms to with with
masked images in	a	clearly defined way.
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Restricted to certain convolution kernels (non-zero	power)!
Differential	convolution kernels require an	additional	normalized

convolutionà Normalized differential	convolution


