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IP1 - Lecture 7: Spectral Image Processing and Convolution

Spectral Image Properties

An image function may be considered a sum of spatially sinusoidal components of
different frequencies.

The frequency spectrum indicates the magnitudes of the spatial frequencies contained

in animage. fy=v
Principle: A °
A y .
— \
= \\ — > f.=u
" —
—
> X "
.

Important qualitative properties of spectral information:
e spectral information is independent of image locations
e sharp edges give rise to high frequencies

e noise (= disturbances of image signal) is often high-frequency
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lllustration of
1-D Fourier Series Expansion

original waveform approximation of a rectangular pulse
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Discrete Fourier Transform (DFT)

Computesimage representationasa sum of sinusoidals.

Discrete Fourier Transform:

Inverse Discrete Fourier-Transform:

u=0 v=0

for u=0,....,M -1 and v=0,...,N-1 for m=0,...,M -1 and n=0,...,N-1
Notation for computing the Fourier Transform: i, &

gmn = F_l {GMV}
Transformis based on periodicity
assumption!

- periodic continuation may
cause boundary effects
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Basic Properties of DFT

* Linearity: F{aglmn + ngmn} — aF{g]mn} + bF{men}

* Symmetry: G,. =G, forrealg,,(such asimages)

In general, the Fourier transform is a complex function with a real
(even) and an imaginary (odd) part:

Guv - Ruv T l[uv

Euler’s formula:

reZ =rcos(z) + risin(z) Recommended reading:

Gonzalez/Wintz
Digital Image Processing
Addison Wesley 87
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Measures of DFT

Freugency/amplitude spectrum G(u.v)|= \/Re{G(u,v)}z +1m{G(u,)}

2
Power spectrum  [G(u.v)

Phase spectrum - arctan(lm(”’v))
Re(u,v)

Frequency f=1/p mit p=vu’+/’

) : .
Direction Y= arctan(;)
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lllustrative Example of
Fourier Transform

g, y)

i)

—
% Y >

X

X
2D image function

Note that large spectral amplitudes occurin
directions vertical to prominent edges of the
image function!

frequency spectrum as an
intensity function
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Examples of Fourier Transform Pairs
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Example of a Real-world Amplitude Spectrum
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Fast Fourier-Transformation

Ordinary DFT needs ~(MN)? operations for an image of size M x N.
Example: M = N = 1024, 1012 sec/operation =2 1,1 s.

FFT (Fast Fourier Transform) is based on
recursive decomposition of g, into subsequences.

Due to multiple use of partial results
= ~ MN log,(MN) Operations.

Same example with FFT needs only about 0.000021 seconds.

The nextslides will:
* introduce the decomposition scheme and
e give one-dimensional examples of the FFT
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Fast Fourier-Transformation

Principle of decomposition forthe 1D-DFT (Cooley & Tukey, 1965):
Forr=20,....N-I and N=2n:

2n-1 —anr—
G, = E g.e Decomposition in odd/even part
n-1 —2]‘[]}”% _2ﬂjr(2§+l)
—_ 2n n
= Ek=0 §£ + g2k+l €
g’ gi”
g(l) 27r]r —.7'17_]}" E g(Z) 27r]r
- k
pe pe g Decomposition in frequency space
f 1
-1 - jr—
ik 1 2)
GV +e W”Gr(z) if r<n G =G.'+e "G~ r=0,..,n-1
= < 1
.1 — T jr—
G- GD if ran G, =G-¢ "GP ren, . 2n-1

All G, my be computed by (N/Z)Z instead of (N)Z operations!
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Cooley & Tukey Decomposition |

Example with two values (N=2)

G, =& +e7™Y g =80 T&
| g =8y &

Graphical representation:

8o G, =8+ & ”y
positive —
negative ——
81 G =g-8
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Cooley & Tukey Decomposition Il

Example with four values (N=4) =

product ——>

>< G,=(g,+&)+ (g +&)

Gz = (go +gz)_ (g1 +g3)
>< G, =(8,— &), + (g —8&)w
. = G =(8) - &)W, — (& - &M

With weights:

80
81
82
83
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Cooley & Tukey Dekomposition Ili

Example with eight values (N=8) d: =
product —>

N =
81 PRIy
8> \ / ><:G 2
83 - =NE
84 G,
8 ><G5
8 6/ ) > G,
87 / >__><>__:G7
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Convolution

Convolutionisanimportant operationfordescribingand analyzinglinear
operations, e.g. filtering.

Definition of 2D convolution for continuous signals:

g0e,y) = [ [ f(r.8) h(x=r,y=s) dr ds = f(x,y)*h(x,y)

—00 —00

Convolutionin the spatial domainis dual to multiplication in the frequency
domain:

F{f(x,y) * h(x,y) } = F(u, v) -H(u, v)
F{f(x,y) - h(x,y) } = F(u, v) *H(u, v)

H can be interpreted as attenuatingoramplifying the frequencies of F.

- Convolutiondescribes filteringin the spatial domain.

05.11.15 University of Hamburg, Dept. Informatics 15
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Filtering in the Frequency Domain

A filter transforms a signal by modifying its spectrum.
G, v)=F(u,v) Hu, v)
F Fourier transform of the signal

H  frequency transfer function of the filter

G  modified Fourier transform of signal

Typical filters:

— low-pass filter low frequencies pass, high frequencies are
attenuated or removed

— high-pass filter  high frequencies pass, low frequencies are
attenuated or removed

— band-pass filter  frequencies within a frequency band pass,
other frequencies below or above are
attenuated or removed

Often (but not always) the noise part of an image is high-frequency and the signal part
is low-frequency. Low-pass filtering then improves the signal-to-noise ratio.




IP1 - Lecture 7: Spectral Image Processing and Convolution

Filtering in the Spatial Domain

Filteringin the spatial domainis described by convolution.

gy = [ [ £(r.s) hx=r,y=s) dr ds= f(x,y)*h(x,y)

—00 —00

Commonly used description for the effect of +0
technical componentsin linear signal theory: s'(t) = f h(r) s(t—r) dr
si) — h — 5,7
asi® +bs,t) —— h —>as; @) +bs; (1)
s:) — h — s

An impulse d as input generates the filter function h(x, y) as output:

h(x,y)= 77 h(r,s) O(x—=r,y—s) dr ds=h(x,y)*0(x,y)

—00 —00

h(x, y) is often called "impulse response”w.r.t. LTI systems
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Low-pass Filters

v

||

Ideal low-pass filter Haw|=1 1 for Jid +v =W

else

* Allfrequenciesabove 7 are annihilated
* Notethatthe filter function A(x, y) is rotation symmetricand
h(r) ~ sinc(2pWr) = sin 2pWr / (2pWr) with r?=x? +y7
- impuls-shapedinput structuresmay produce ring-like structures as output
Gaussian filter

* optimallysmooth boundary, bothinthe frequencyand the spatial domain.

 importantforseveral advanced image analysis methods, e.g. generating
multiscale images.
1 1 )c2+y2

- —(u"+v)o N )
_, 2 h(x,y)= &
H(u,v)=e Y oom
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Discrete Filters

For periodicdiscrete 2D signals (e.g. discrete images), the convolution

operator which describes filteringis e

Z

-1

fm,nhi—m,j—n

glj

S
Il
(@)

m=0

Each pixel g;; of the filtered image is the sum of the products of the original
image with the mirror filter 4_,,_, placed at location ;.

Example Ny = h_pm ., is @ bell-shaped function, e.g. Gaussian

' The filtering effect is a smoothing operation by
weighted local averaging.

The choice of weights of a local filter - the convolution mask - may

influence the properties of the output image in important ways, e.g.

with regard to remaining noise, blurred edges, artificial structures,
preserved or discarded information.
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Matrix Notation for Discrete Filters

M-1 N-1

The convolution operation &;; = E Efm,nhi_m,j_n

m=0 n=0

may be expressed as matrix multiplication: g = Hf
Vectors g andf are obtained by stackingrows (or columns) onto each other:

—-T

8 =(goo 8o1" " 8on-1 810 811" 8iv-1"" " 8m-10 8m-11 """ 8m-1 N-l )
fT=(f00 fo1"' f()N—l flo f11 le-l"' fM—lO fM—ll fM—l N-1 )

The filter matrix H is obtained by constructing a matrix H; for each row of ,;:

o Miwa My o h; Hp &1, ASOEEY R93 P
H]'= h{'l h{'o hj.N—l hj;2 H = H, H, HI.V—l H,
hl N-1 hl N-2 ]'H N-3 T th H,, Hy, H,; - H,

05.11.15 University of Hamburg, Dept. Informatics 20
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Avoiding Wrap-around Errors

Wrap-around errorsresult from filter responses due to the periodic
continuation of image and filter = periodicity (cf. slide 4).

To avoid wrap-around errors,image and filter have to be extended e.g.
by zeros.

e AXB original image size

M=>A4+C-1

e CxD originalfiltersize
N>B+D-1

« M XN extendedimageandfiltersize

Example:

05.11.15 University of Hamburg, Dept. Informatics 21
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Discrete Convolution Using the FFT

Convolution in the spatial domain may be performed more efficiently
using the FFT.

<
Z

1 N-1
g, = Emnli—m, j-n (MN)? operations needed
0

S
Il
=]

3
I

Using the FFT andfilteringin the frequency domain:

FFT FFT?
T Gu :> >
MN log(MN) MN log(MN) # of operations

Examplewith M = N = 512:
— straight convolution needs ~ 10!° operations
— convolution usingthe FFT needs ~10’ operations
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Convolution and Correlation

The crosscorrelation function of 2 stationary stochastic processes
fand his:

goe,y) = [ [ f(r.) h(r-x,5-y) dr ds = f(x,y)-h(x,y) = f(x,y)%h(-x,~y)

—00 —00

Compare with convolution:filter function is not mirrored!

Correlation using Fourier Transform:
F{fix, y) o h(x, y) } = F*(u, v) H(u, v)
F{ 4, y) h(x,y) } = F(u,v) o H(u, v)

F*, f* are complex conjugates

Correlation is particularly important for matching problems,
e.g. matching an image with a template.

Correlation may be computed more efficiently by using the FFT.
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Correlation and Matching

Matchinga template with an image:

image template
I! e find degree of match for all locations
of template
e find location of best match

- M-1 N-1
For (periodic) discrete images .= s,
(p ) o g ’ Cl] fmnhm—l,l’l—]
crosscorrelationat (i, j) is s
. . . M-1 N-1 2
Compare with Euclidean dlstanced 1 (f _1 )
. .. 1 mn m—i.n—j
between fand & at location (3,j): Y 4 & Y
M-1 N-1 M-1 N-1 M-1 N-1 >
= 2 £ h h
Since image energy and template = (fmn) L Jonn m—i.n—j+2 ( m—i.n—j)
energy are constant, correlation n _n=g , PP L =0 TR ,
Energy Cij Energy

measures distance
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Principle of Image Restoration

Typical degradation model of a continuous 1-dimensional signal:

z(1) g(t) original signal
. h(t) degrading filter
g(t) — h( g’ 2(1) additive noise

-0 degraded signal

How can one process g () to obtaina g () which best approximates g(7)?

Note that a perfect restoration g"’(z) = g(t) may not be possible

even ifz(t) = 0.
2

. ' ” n r(t) restoring filter
g’ (¥ g (1 g ’(t) restored signal

The ideal restoringfilter H'(f) = 1/H(f) may not exist because of zeros of H(f).

Go) — Rl — ¢ — KU — GO
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Image Restoration by Minimizing the MSE

Degradation in matrix notation: g'=Hg+7

Restored signal g¢”” must minimize the meansquareerrorJ(g”’) of the
remaining difference: mjn”g’_Hg” ?

dJ(g")

dg

=_2HT(§/_H—>”)=O

= §'=(H'H) H'g
t

pseudoinverse of H

If His a square matrix, and if H'! exists, we can simplify: g"=H'g’
The matrix H/ gives a perfect restorationif z = 0.
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Discrete Convolution of Masked Images

Scenario: Greyvalues exist only for a partial domain of theimage function

 Examples:
— Cloud coverage in aerial and satellite images,
— Segmented areas
— Sensor malfunctions

* Problemsarise atthe boundary of the convolution kernel (Titmarsh 1926).
In these areas, discrete convolutionresults in undesired effects.

e Easyfixes” suffer from additional problems:
1. Exclude the boudary areas > (Strong) reduction of the resulting image space!
2. Setto zero - Errorneous values are introduced!

e |Ifiterative algorithmsare used, errors may also be propagatedand
enhanced!

Wanted: An approach, which treats ,,masked” pixel as ,,no information“
instead of ,,no intensity“!
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Normalized Convolution |

Approach of Knutsson und Westin (1993):

A K*(I-M :
' | % ( ) if A-K*M =0
]=K*] :> I=K M,AI=< A'K*M
0 else.
with: Example:
K  Convolution kernel I = {250, 225, 200, 175, 150, 125, 100, 75, 50, 25, 0}
I Image M=1{111100,0,0,0, 0}
A Applicable kernel K =1{1,2,4,8,4,21}/22
M Image mask A=1 ‘@

K*I=1{,,,175,150,125,100,75,,,}
K*(I-M)=1{,,,159.09, 114.77, 52.27,21.59,6.82 , , , }
K*, 1=1,,,18421,168.33,164.29, 158.33, 150, , }
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Normalized Convolution Il

Example of Knutsson und Westin

10%

Samplins_;; ‘t

1
K*I

2D discrete Gaussian
mit 0=2, GroRBe:17x17 A locally

restricted
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Normalized Convolution lli

Summary

Combines mask and discrete convolution,
Execution speed may be enhanced by the use of FFT

Derives results for masked areas if at least one non-masked
pixel exists within the current neighborhood
— may also be used for reconstruction purpose

Provides a base to extend generic algorithms to with with
masked images in a clearly defined way.

Restricted to certain convolution kernels (non-zero power)!
Differential convolution kernels require an additional normalized
convolution 2 Normalized differential convolution




